Phase-controlled, speckle-free holographic projection with applications in precision optogenetics.

نویسندگان

  • Tal Aharoni
  • Shy Shoham
چکیده

Holographic speckle is a major impediment to computer-generated holographic (CGH) projections in applications ranging from display, optical tweezers, and machining to optogenetic neural control. We present an iterative phase retrieval algorithm that allows the projection of amplitude-controlled speckle-free one-dimensional patterns with a high degree of pattern uniformity. The algorithm, termed the weighted Gerchberg-Saxton with phase-control (GSW-PC), is shown to have the ability to simultaneously control both the phase and amplitude of projected patterns with high diffraction efficiencies. Furthermore, we show that the framework can address the challenge of projecting volumetric phase and amplitude-controlled patterns, by incorporating GSW-PC with the angular spectrum method. The algorithms' performance is numerically and experimentally tested, and further compared with conventional and modern CGH techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random phase-free computer-generated hologram.

Addition of random phase to the object light is required in computer-generated holograms (CGHs) to widely diffuse the object light and to avoid its concentration on the CGH; however, this addition causes considerable speckle noise in the reconstructed image. For improving the speckle noise problem, techniques such as iterative phase retrieval algorithms and multi-random phase method are used; h...

متن کامل

Non-iterative phase hologram computation for low speckle holographic image projection.

Phase-only spatial light modulators (SLMs) are widely used in holographic display applications, including holographic image projection (HIP). Most phase computer generated hologram (CGH) calculation algorithms have an iterative structure with a high computational load, and also are prone to speckle noise, as a result of the random phase terms applied on the desired images to mitigate the encodi...

متن کامل

light shaper for speckle - free one - and two - photon contiguous pattern excitation

Generalized Phase Contrast (GPC) is an efficient method for generating speckle-free contiguous optical distributions useful in diverse applications such as static beam shaping, optical manipulation and recently, for excitation in two-photon optogenetics. To fully utilize typical Gaussian lasers in such applications, we analytically derive conditions for photon efficient light shaping with GPC. ...

متن کامل

Reduction of two-photon holographic speckle using shift-averaging.

Holographic speckle is a major impediment for the emerging applications of multiphoton holographic projection in biomedical imaging, photo-stimulation and micromachining. Time averaging of multiple shifted versions of a single hologram ("shift-averaging") is a computationally-efficient method that was recently shown to deterministically eliminate holographic speckle in single-photon application...

متن کامل

GPC light shaper for speckle-free one- and two-photon contiguous pattern excitation.

Generalized Phase Contrast (GPC) is an efficient method for generating speckle-free contiguous optical distributions useful in diverse applications such as static beam shaping, optical manipulation and recently, for excitation in two-photon optogenetics. To fully utilize typical Gaussian lasers in such applications, we analytically derive conditions for photon efficient light shaping with GPC. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurophotonics

دوره 5 2  شماره 

صفحات  -

تاریخ انتشار 2018